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Abstract: Birch reduction of several 5-aryl-4,5-dihydro-l,3-dioxepins gave rise to 3-arylbutanal in 
moderate to good yields by hydrogenolytic cleavage of the homohenzylic-homoallylic carbon-oxygen 
bond when the henzylic-allylic carbon is tertiary. However, the reaction did not take place when the 
henzylic-allylic carbon is quaternary. Moreover, the reaction was found to proce, ed with complete 
racemization at the benzylic-allylic center indicating a concurrent elimination-reduction pathway to he 
involved. 

We, recently, reported a new synthetic entry into the aromatic bisabolane sesquiterpenes by inadvertent 

discovery of an unprecedented hydrogenolytic cleavage reaction. I Thus, treatment o f  2-tert-butyl-4,5-dihydro- 

5-(4-methylphenyl)-1,3-dioxepin ( le )  under standard Birch conditions 2 using sodium in liquid ammonia 

furnished 3-(4-methylphenyl)butanal (2a), a common key intermediate of the natural products, in a satisfactory 

yield after quenching the reaction with ammonium chloride (Scheme 1). In order to extend this reaction for 

the synthesis of a variety of substituted butanal derivatives, we investigated the reaction using some typical 

substituted 5-aryl-4,5-dihydro-l,3-dioxepin derivatives 1,3,4 including a chiral substrate.We now report the 

results which indicate generality and mechanism of the reaction. 
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Scheme 1 

We first examined the reaction in a liquid ammonia in the presence of sodium metal using the substrates 

(1) bearing a tertiary benzylic-ailylic center having a variety of 2-substituents. In all cases, a smooth 

hydrogenolysis occurred at the homobenzylic-homoallylic carbon-oxygen bond to give the corresponding 3- 

arylbutanals (2) in moderate to good yields, in some cases, accompanied by a minor amount of the 

overreduced products 4 (3). Virtually, the substituent(s) on C-5 aromatic ring and C-2 center did not affect on 

the reaction though the yields were significantly diminished in the substrates bearing no substituent on C-2 

center (Entries 2-4). Addition of a proton source such as ethanol or tert-butanol rather made the reaction more 

complex and gave a bad mixture (Table 1). 
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Table 1. Birch Reduction of 5-Aryl-4,5-dihydro-l,3-dioxepins (1) 

Ar x,,~Me Ar x,.l.,.Me Ar',.,.,/"~OxR 1 |  Na (10 atom equiv.) l=. + 
~"~---O R2 liq. NH3, -33 °C q,,v,.OH CHO then NH4CI 

1 2 3 

Substrate Product (2) Product (3) 

Entr~ RI R2 Ar Ar (%) Ar (%) 

1 a: H H 4-Me a: 4-Me (67) a: 4-Me (6) 

2 b: H H H b: H (49) 

3 c: H H 4-MeO c: 4-MeO (54) 

4 d: H H 2-NHAc d: 2-NHAc (49) 

5 e: t-Bu H 4-Me a: 4-Me (70) a: 4-Me (8) 

6 f: t-Bu H 4-MeO c: 4-MeO (66) 

7 g: t-Bu H 3-MeO e: 3-MeO (6 ! ) 

8 h: t-Bu H 2-MeO f: 2-MeO (82) 

9 i: Me IVle 4-Me a: 4-Me (81 ) 

I 0 j: -(CH2)4- 4-Me a: 4-Me (78) 

11 k: -(CH2)5- 4-Me a: 4-Me (70) ~" 4-Me (8) 

12 1: -(CH2)5- 4-MeO c: 4-MeO (61 ) 

Interestingly, the tetrahydrooxepin (3) as well as the 3-aryl-2,3-dihydrofuran 5 (4a) and 3- 

aryitetrahydrofuran (4b) furnished the corresponding cleavage products, 3e, 2a and 3a, indicating that neither 

the homoallylic double bond nor the dioxepin ring is essential for the reductive cleavage (Scheme 2). 
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Scheme 2 

However, the reaction did not proceed without presence of 5-aryl group since the substrates, 5 and 6, 

bearing 5-alkenyl 6 or 5-alkyl group in place of 5-aryl group were found to be inert under the same conditions. 
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Moreover, the reaction did not occur at all with the 5,5-disubstituted tetrahydrooxepin substrate 7 (7) even 

though 5-aryl group existed (Scheme 3). 

n C s H . ~ O  But Na (10 atom equiv.) no reaction 

~ " ~ O  H liq. NH3 

5 
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Scheme 3 

More interestingly, when the optically active substrate 8 [(-)-lb] (68.4% ee) 8,9 was subjected to the same 

reaction conditions, the original chiral integrity was lost completely during the reaction to afford the racemic 

aldehyde 9 [(-l-)-2b] (Scheme 4). 

~ O  Na (10 atom equiv.) ~ L ~  
~- Me 

liq. NH 3 

O 41% CHO 

(-)-lb (68.4% ee) (:l:)-2b (-0% ee) 

Scheme 4 

Taking these results into account, we assume that the hydrogenolytic reaction occurred through a 

concurrent elimination-reduction pathway. Namely, the homoaUylic oxygen bond was first cleft presumably 

by sodium amide present in a reaction medium to generate sequentially 8 and 9, the latter of which was then 

reduced to a dianion (11) via a radical anion (10) by sequential one-electron reduction, proton abstraction from 

ammonia by forming an amide ion (or from the liberated carbonyl compound by forming an enolate ion), and 

one-electron reduction. Finally, acid workup led to a formation of a 3-arylbutanal (2) from the dianion (11) by 

protonation. When the reaction was carded out in the presence of sodium amide, prepared in the same reaction 

medium, in place of sodium metal, a 3-aryl-2obutenal could he isolated as a E/Z-mixture which may he 

generated from a conjugated enolate (9) by protonation (Ar=3- or 4-methoxyphenyl, Rl=tert-butyl, R2=H) 

(Scheme 5). 

In conclusion, we have shown that 5-aryl-4,5-dihydro-l,3-dioxepins can be reductively cleft at the 

homobenzylic-homoallylic oxygen bond via an elimination-reduction pathway only when the benzylic-allylic 

center is tertiary though the allylic double bond not always to he essential. 
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Scheme 5 
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